The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations.
نویسندگان
چکیده
The naturally occurring genetic heterogeneity of autotrophic ammonia-oxidizing populations belonging to the beta subclass of the Proteobacteria was studied by using a newly developed PCR-based assay targeting a partial stretch of the gene which encodes the active-site polypeptide of ammonia monooxygenase (amoA). The PCR yielded a specific 491-bp fragment with all of the nitrifiers tested, but not with the homologous stretch of the particulate methane monooxygenase, a key enzyme of methane-oxidizing bacteria. The assay also specifically detected amoA in DNA extracted from various aquatic and terrestrial environments. The resulting PCR products retrieved from rice roots, activated sludge, a freshwater sample, and an enrichment culture were used for the generation of amoA gene libraries. No false positives were detected in a set of 47 randomly selected clone sequences that were analyzed further. The majority of the environmental sequences retrieved from rice roots and activated sludge grouped within the phylogenetic radiation defined by cultured strains of the genera Nitrosomonas and Nitrosospira. The comparative analysis identified members of both of these genera in activated sludge; however, only Nitrosospira-like sequences with very similar amino acid patterns were found on rice roots. Further differentiation of these molecular isolates was clearly possible on the nucleic acid level due to the accumulation of synonymous mutations, suggesting that several closely related but distinct Nitrosospira-like populations are the main colonizers of the rhizosphere of rice. Each of the amoA gene libraries obtained from the freshwater sample and the enrichment culture was dominated by a novel lineage that shared a branch with the Nitrosospira cluster but could not be assigned to any of the known pure cultures. Our data suggest that amoA represents a very powerful molecular tool for analyzing indigenous ammonia-oxidizing communities due to (i) its specificity, (ii) its fine-scale resolution of closely related populations, and (iii) the fact that a functional trait rather than a phylogenetic trait is detected.
منابع مشابه
Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations.
The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus m...
متن کاملComparison among amoA Primers Suited for Quantification and Diversity Analyses of Ammonia-Oxidizing Bacteria in Soil
Ammonia monooxygenase subunit A gene (amoA) is frequently used as a functional gene marker for diversity analysis of ammonia-oxidizing bacteria (AOB). To select a suitable amoA primer for real-time PCR and PCR-denaturing gradient gel electrophoresis (DGGE), three reverse primers (degenerate primer amoA-2R; non-degenerate primers amoA-2R-GG and amoA-2IR) were examined. No significant differences...
متن کاملMolecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal processes.
Aerated-anoxic processes operate under the principle that small additions of oxygen to an anoxic reactor induce simultaneous nitrification and denitrification. In these systems, ammonia oxidation in the anoxic zone can easily account for 30-50% of the total nitrification in the reactor, even though the dissolve oxygen concentration is usually below detection limit. To investigate whether the ni...
متن کاملGrowth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms.
Ammonia oxidation, as the first step in the nitrification process, plays a central role in the global cycling of nitrogen. Although bacteria are traditionally considered to be responsible for ammonia oxidation, a role for archaea has been suggested by data from metagenomic studies and by the isolation of a marine, autotrophic, ammonia-oxidizing, non-thermophilic crenarchaeon. Evidence for ammon...
متن کاملInfluence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil.
The effect of effluent irrigation on community composition and function of ammonia-oxidizing bacteria (AOB) in soil was evaluated, using techniques of molecular biology and analytical soil chemistry. Analyses were conducted on soil sampled from lysimeters and from a grapefruit orchard which had been irrigated with wastewater effluent or fertilizer-amended water (FAW). Specifically, comparisons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 63 12 شماره
صفحات -
تاریخ انتشار 1997